Tag Archives: rov

ROV Prototype Built

The ROV team has been hard at work putting together the prototype. They’ve printed all of the parts that allow for a very modular testing unit. Doing it this way allows them to quickly and easily swap out broken parts and change the configuration, so a large number of chassis configurations can be tested.

With a mechanical sprint planned soon to deal with the upcoming project design release, a significant amount of progress has been made that allows for the team to jump right into things when specifications are released.

ROV Project Prototyping Continues

Our ROV team is hard at work with all aspects of design! With the custom boards that recently came in, the mechanical team of the ROV project is able to show some 3D renderings of what the internals of the prototype looks like. Visible are the custom power distribution board, the custom sensor board, and more. This all stacks together nice and small so that it can be compactly inserted into the main PVC compartment of the prototype.

With this in hand, the ROV team continues to 3D print out parts of the prototype, solder everything together, and write the code to control everything. It’s almost ready to put in the water!

Custom ROV PCb’s are here!

The ROV team has been hard at work on its prototype for the MATE  competition. This prototype requires some custom PCB’s, so the team has designed,  developed, and had printed a board that can mount onto a Raspberry Pi and give connections to all sort of sensors. Having these boards really pushes the ROV to the next level!


ROV Group Picks Chassis Design

The ROV project made some technical decisions for the first time this semester at their most recent meeting.  The big meeting point was picking out a basic thruster configuration- the competition requires mobility, but given that only so much current (and therefore thrusters) are allowed, what is the best possible configuration?

The team has set the limit of thrusters to be 6. Vector drives were discussed but eventually dismissed, because the added complexity didn’t seem to have enough of a benefit to be worth it.

The final decision for the configuration was to have 2 thrusters to move up and down (one at the front, and another at the back), and to have the remaining 4 thrusters be mounted on the side- 2 to control forward and backwards movement, and 2 to control strafing. By intentionaly offsetting the height of the strafing motors from each other, the chassis can also strafe normally while still being able to perform rolls. This would be used mostly as a corrective feature.

Click here to learn more about this project.