Category Archives: Project Updates

Updates about our various projects.

ROV Prototype Built

The ROV team has been hard at work putting together the prototype. They’ve printed all of the parts that allow for a very modular testing unit. Doing it this way allows them to quickly and easily swap out broken parts and change the configuration, so a large number of chassis configurations can be tested.

With a mechanical sprint planned soon to deal with the upcoming project design release, a significant amount of progress has been made that allows for the team to jump right into things when specifications are released.

ROV Project Prototyping Continues

Our ROV team is hard at work with all aspects of design! With the custom boards that recently came in, the mechanical team of the ROV project is able to show some 3D renderings of what the internals of the prototype looks like. Visible are the custom power distribution board, the custom sensor board, and more. This all stacks together nice and small so that it can be compactly inserted into the main PVC compartment of the prototype.

With this in hand, the ROV team continues to 3D print out parts of the prototype, solder everything together, and write the code to control everything. It’s almost ready to put in the water!

Custom ROV PCb’s are here!

The ROV team has been hard at work on its prototype for the MATE  competition. This prototype requires some custom PCB’s, so the team has designed,  developed, and had printed a board that can mount onto a Raspberry Pi and give connections to all sort of sensors. Having these boards really pushes the ROV to the next level!

 

ROV Group Picks Chassis Design

The ROV project made some technical decisions for the first time this semester at their most recent meeting.  The big meeting point was picking out a basic thruster configuration- the competition requires mobility, but given that only so much current (and therefore thrusters) are allowed, what is the best possible configuration?

The team has set the limit of thrusters to be 6. Vector drives were discussed but eventually dismissed, because the added complexity didn’t seem to have enough of a benefit to be worth it.

The final decision for the configuration was to have 2 thrusters to move up and down (one at the front, and another at the back), and to have the remaining 4 thrusters be mounted on the side- 2 to control forward and backwards movement, and 2 to control strafing. By intentionaly offsetting the height of the strafing motors from each other, the chassis can also strafe normally while still being able to perform rolls. This would be used mostly as a corrective feature.

Click here to learn more about this project.

ROV Project re-frames goals

Due to issues regarding scheduling, it’s been a rough start for the most recent take on the ROV project. It’s not the first time the IEEE has taken on this challenge, but this is a very new team, with veteran members graduating and new members taking over. Thanks to that, and thanks to scheduling conflicts, it’s been hard to continue progress, and the ROV team has agreed to not rush to compete in the upcoming challenge. Instead, they’ll be prioritizing basic functions like control, movement, and object manipulation, ensuring that these tasks (which are universal aspects of each year’s challenges) will be well designed and operational. This should allow for a well designed machine, rather than one that is assembled last minute (as would have been the case if the deadline for this competition was met). The ROV project has typically been one of our most intensive and demanding projects, so although this re-framing of goals is not particularly glamorous, it is a necessary part of engineering the best design.

‘Harnessing radio waves for power’ project is completed

Earlier in the spring semester, we had a group approach us who wanted to get access to our resources so they could work on one of their in-class design projects: creating a device that could harness radio waves for power. They knew it wouldn’t be much, but were hoping that it would be enough to power small electronics like a sensor network.

They pitched their goal in a general meeting and showed some research that demonstrated that this was a technically viable project. It looked interesting and like there was a lot we could learn from it, so we were happy to give them some materials and access to the lab so they could work on their project.

In early April, they had completed their project and were ready to present. They shared their schematics and how it worked over a lecture with pizza, and showed that the voltage they received was more than they had anticipated, to the point that they are confident that this could power low-powered electronics like sensors, as they had hoped.

This slideshow requires JavaScript.

Overall, it was a successful project, and one that the IEEE is happy to have been a part of. We wish all members of this project the best of luck and hope that they return next year!